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Abstract 

Using workstations interconnected by a LAN as a distributed parallel computer is becoming in- 
creasingly common. At the same time, parallelizing compilers are making such systems easier 
to program, Understanding the traffic of compiler-parallelized programs running on networks is 
vital for network planning and for designing quality of service interfaces and mechanisms for new 
networks. To provide a basis for such understanding, we measured the traffic of six dense-matrix 
applications written in a dialect of High Performance Fortran and compiled with the Fx paralleliz- 
ing compiler. The traffic of these programs is profoundly different from typical network traffic. In 
particular, the programs exhibit global collective communication patterns, correlated traffic along 
many connections, constant burst sizes, and periodic burstiness with bandwidth dependent period- 
icity. The traffic of these programs can be characterized by the power spectra of their instantaneous 
average bandwidth. These spectra can be simplified to form analytic models to generate similar 
traffic. 



Keywords: network traffic characterization, networks of workstations, workstation clusters, paral- 
lelizing compilers 



1    Introduction 

As the performance of local area networks grows, it is increasingly tempting to use a cluster of 
workstations as a parallel computer. At the same time, presentation layer APIs such as PVM [21] 
and MPI [22], and parallel languages such as High Performance Fortran [10] are being standard- 
ized, greatly enhancing the portability of parallel programs to workstation clusters. Further, the 
parallel computing community has developed extremely efficient implementations of these APIs 
and languages [19,1, 4]. 

As implementations continue to become more efficient, the performance of the network will 
be increasingly important. In addition to significantly increased connection and aggregate band- 
widths, next generation LANs, such as ATM [3, 2], will supply quality of service (QoS) guaran- 
tees for connections. Parallel programs may be able to benefit from such guarantees. However, 
to extract a QoS guarantee from a network, an application must supply a characterization of its 
traffic [8]. Much of the work in traffic characterization has concentrated on media streams [9,11], 
although some work on ATM call admission for parallel applications has assumed correlated bursty 
traffic [7]. In this paper, we detail measurements of the traffic of dense matrix parallel programs 
written in a dialect of High Performance Fortran and compiled with the Fx parallelizing com- 
piler [13]. 

In all, we measured the network behavior of six Fx parallel programs on an Ethernet. Five of 
these programs are kernels which exhibit global communication patterns common to Fx programs. 
Fx parallelizes dense matrix codes written in a dialect of High Performance Fortran. Fx targets 
the SPMD machine model, as do many other parallelizing compilers. We also look at a large scale 
example of an Fx application, an air quality modeling application which is being parallelized at 
CMU in a project related to Fx [14]. 

The outgrowth of these measurements is the observation that the traffic of Fx parallel programs 
is fundamentally different from those of media streams. Specifically, parallel programs exhibit 

• Global collective communication patterns 

• Correlated traffic along many connections 

• Constant burst sizes 

• Periodic burstiness 

• Bandwidth dependent periodicity 

We characterize the programs' bandwidth demands by the power spectra of their instantaneous 
average bandwidths. These spectra directly correspond to the Fourier series coefficients needed to 
reconstruct the instantaneous average bandwidth at any point in time. Interestingly, these spectra 
are rather sparse and "spiky", which means the Fourier expansion can be limited to important 
spikes, forming a simple analytic model that approximates the instantaneous average bandwidth. 

The paper begins by describing common communication patterns exhibited by Fx parallel pro- 
grams. The next section describes each of the six programs we measured, in particular explaining 
how its communication pattern arises. Following this, we describe the PVM communications li- 
brary used by the the Fx run-time system. Next, we describe our methodology in considerable 
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detail. The main part of the paper presents our measurements, including the power spectrum of 
the instantaneous bandwidth for each of the programs. The power spectra of the programs makes 
their periodicity absolutely clear. Following the measurements, we discuss the results, and com- 
ment on how the power spectra can be used to build simple analytical models of the bandwidth 
requirements of the programs. We also discuss a QoS negotiation scheme that is more amenable 
to parallel programs. Finally, we conclude with an overview. 

2 Communication Patterns of Fx Programs 

The Fx [13] compiler parallelizes dense matrix codes based on parallel array assignment state- 
ments and targets distributed memory parallel computers using the Single Program, Multiple Data 
(SPMD) model. This model is the ultimate target of many parallel and parallelizing compilers. 
In the SPMD model, each processor executes the same program, which works on processor-local 
data. Frequently, the processors exchange data by message passing, which also synchronizes the 
processors. This message exchange is referred to as a communication phase. The parallel program 
executes as interleaved communication and local computation phases. 

A communication phase can be classified according to the pattern of message exchange among 
the processors. In general, this pattern can be many-to-many, where each processor sends to any ar- 
bitrary group of the remaining processors. However, certain patterns are much more common than 
others, especially in dense matrix computations such as those typically coded in High Performance 
Fortran and Fx. For example, the neighbor pattern, where each processor pi sends to processors 
Pi-i and pi+1 is common. Another common pattern is all-to-all, where each processor sends to 
every other processor. A third pattern is partition, where the processors are partitioned into two 
or more sets and each member of a set sends to every member of another set. Fourth, a single 
processor may broadcast a message to every other processor. Finally, the pattern can be a tree, 
where every second processor sends to its left neighbor and then drops out. This is repeated until 
one processor remains. Sometimes this is followed with a "down-sweep", reversing the process. 
These communication patterns are summarized in Figure 1. 

3 Program descriptions 

The six Fx [13] programs chosen for investigation fall into two classes. Five of the programs, SOR, 
2DFFT, TDFFT, SEQ, and HIST, are kernels that exhibit the communication patterns discussed in 
section 2. These kernels are part of the Fx compiler test suite. AIRSHED [16, 14], an air quality 
modeling application, represents a "real" scientific application. 

3.1   Fx kernels 

Five of the Fx programs, SOR, 2DFFT, T2DFFT, SEQ, and HIST, were chosen to exhibit commu- 
nication patterns common to SPMD parallel programs discussed in section 2. These kernels are 
summarized in figure 2. For each program, we discuss the distribution of its data (anNxN matrix) 
over its P processors, the local computation on each processor, and the global communication it 
exhibits. 



Neighbor       All-to-all Partition Broadcast 

Tree (up 1)     Tree (up 2)   Tree (down 1) Tree (down 2) 

Figure 1: Fx Communication patterns 

Pattern Kernel Description 
Neighbor SOR 2D Successive overrelaxation 
All-to-all 2DFFT 2D Data parallel FFT 
Partition T2DFFT 2D Task parallel FFT 
Broadcast SEQ Sequential I/O 
Tree HIST 2D Image histogram 

Figure 2: Fx kernels 

SOR 

SOR is a successive overrelaxation kernel. In each step, each element of an NxN matrix computes 
its next value as a function of its neighboring elements. In the Fx implementation, the rows of the 
matrix are distributed across P processors by blocks: processor 0 owns the first ^ rows, processor 
1 the next ^ rows, etc. Because of this distribution, at each step, every processor p except for 
processors 0 and P — 1 must exchange a row of data with processor p — 1 and processor p + 1 
before computing the next value of each of the elements it owns. In every step, each processor 
performs O(^p-) local work and sends an O(N) size message to processors p — 1 and p + 1. SOR 
is our example of such a neighbor communication pattern. 

2DFFT 

2DFFT is a two-dimensional Fast Fourier Transform. Like in SOR, the N x N input matrix has 
its rows block-distributed over the processors. In the first step, local one-dimensional FFTs are run 
over each row a processor owns. Next, the matrix is redistributed so that its columns are block- 
distributed over the processors. Finally, local one-dimensional FFTs are run over each column a 

processor owns. Each processor performs 0 (N ]°%N) work and generates aO(f^) ) size message 
for every other processor. 2DFFT is our example of a all-to-all communication pattern. 



T2DFFT 

T2DFFT is a pipelined, task parallel 2DFFT. Half of the processors perform the local row FFTs 
and send the resulting matrix to the other half, which perform the local column FFTs. A side effect 

of the communication is the distribution transpose, so each sending processor sends an 0( (^J ) 
size message to each of the receiving processors. Notice that each message is twice as large as for 
2DFFT for the same number of processors. Each processor performs 0(N lpN) work. This is our 
example of a. partition communication pattern. 

SEQ 

SEQ is an example of the kind of broadcast communication pattern that results from sequential I/O 
in Fx programs. An N x N matrix distributed over the processors is initialized element-wise by 
data produced on processor 0. This is implemented by having processor 0 broadcast each element 
to each of the other processors, which collect the elements they need. This program performs no 
computation, but processor 0 sends N2 0(1) size messages to every other processor. This is our 
example of a broadcast communication pattern. 

HIST 

HIST computes the histogram of elements of a TV x N input matrix. The input matrix has its rows 
distributed over the processors. Each processor computes a local histogram vector for the rows it 
owns. After this, there are log P steps, where at step i, processors whose numbers are odd multiples 
of 28 send their histogram vector to the processors that are even multiples of 2l. These processors 
merge the incoming histogram vector with their local histogram vector. Ultimately, processor 0 
has the complete histogram, which it broadcasts to all the other processors. This is an example of 
a tree communication pattern. 

3.2   AIRSHED Simulation 

The multiscale AIRSHED model captures the formation, reaction, and transport of atmospheric 
pollutants and related chemical species [15]. The goal of a related research project is to con- 
vert this massive application into a portable and scalable parallel program [14]. As a part of this 
work, AIRSHED is being ported to Fx. However, at the time of our research, this port had not 
been completed. Instead, we measured an Fx skeleton of the application which was prepared by 
the group performing the actual port. The skeleton application models both the computation and 
communication of the actual application. 

AIRSHED simulates the movement and reaction of s chemical species, distributed over do- 
mains containing p grid points in each of / atmospheric layers [16]. In our simulation, s = 35 
species, p = 1024 grid points, and / = 4 atmospheric layers. The program computes in two prin- 
ciple phases: (1) horizontal transport (using a finite element method with repeated application of a 
direct solver), followed by (2) chemistry/vertical transport (using an iterative, predictor-corrector 
method). Input is an / x s x p concentration array C. Initial conditions are input from disk, and 
in a preprocessing phase for the horizontal transport phases to follow, the finite element stiffness 



matrix for each layer is assembled and factored. The atmospheric conditions captured by the stiff- 
ness matrix are assumed to be constant during the simulation hour, so this step is performed just 
once per hour. This is followed by a sequence of k simulation steps {k = 5 in the simulation), 
where each step consists of a horizontal transport phase, followed by a chemistry/vertical transport 
phase, followed by another horizontal transport phase. Each horizontal transport phase performs 
/ x s backsolves, one for each layer and species. All may be computed independently. However, 
for each layer /, all backsolves use the same factored matrix A\. The chemistry/vertical transport 
phase performs an independent computation for each of the p grid points. Output for the hour is 
an updated concentration array C, which is the input to the next hour. 

In the implementation, the array is distributed across P processors by layer: processor 0 owns 
the first -p layers, processor 1 owns the next p- layers, and so on. In the first stage, the preprocess- 
ing and horizontal transport operates on the layer dimension, so the computation is local and no 
communication is involved. In the second stage, however, the chemistry/vertical transport operates 
on the grid dimension, and so a transpose on the concentration array C is performed to distribute 
the data across the processors by grid point: processor 0 owns the first p grid points, processor 
1 owns the next p grid points, and so on. Such transpose requires that each processor sends a 
message of size 0(pX

p
s*1) to every other processors. Once the chemistry/vertical transport com- 

putation is finished, a reversed transpose is performed in a similar fashion - each processor sends 
a message of size 0(pp

s*1) to each of the other processors. This is followed by another horizon- 
tal transport phase. In summary, each step is characterized by a period of computation phase of 
duration U (preprocessing), followed by k back-to-back pairs of all-to-all traffic attributed to the 
distribution transpose, interleaved with horizontal transport (of duration th) and vertical/chemical 
transport computation (of duration tv). 

4    Communication mechanisms 

All of our test applications use the PVM system for communication. PVM [21, 12] is a message- 
passing and utility package which provides a presentation layer interface which has the syntax and 
semantics of message passing interfaces on distributed memory parallel supercomputers. In addi- 
tion to message passing, PVM also provides mechanisms for managing a dynamic, heterogeneous 
pool of machines as a single "parallel virtual machine." This support is implemented in a user-level 
daemon process which is run on each machine. The daemons talk to each other via UDP in order 
to maintain information about the global state of the virtual machine, as well as to handle user 
requests such as sending signals to remote user processes. Each machine may run multiple user 
processes. A user process can communicate with another user process on the same machine or 
on a different machine using the same interface. Intramachine communication is done via a local 
IPC mechanism. Intermachine communication can be done in two distinct (user selectable) ways. 
By default, the message is copied via IPC to the daemon, which sends it to the daemon on the 
destination machine via a protocol built on top of UDP. The receiving daemon then delivers the 
message to the destination process via IPC. This mechanism has the advantage of better scalabil- 
ity, but tends to be somewhat slow. In the alternative mechanism, the messages are sent directly 
from the sender process to receiver process via TCP. All of the Fx kernels and AIRSHED use this 
mechanism. 



PVM messages can contain arbitrary data collected from arbitrary memory locations. Data 
is "packed" into a message using a variety of API calls. However, the data is not necessarily 
appended into a contiguous memory buffer. Instead, it is stored as a list of fragments which are 
sent independently. This distinction is important to understand the behavior of one of the Fx 
kernels, T2DFFT. All the other kernels (and AIRSHED) assemble their messages in a copy loop 
before using PVM. The result is that each message is sent as a single, large fragment by PVM. The 
copy loop is an artifact of other (older) Fx implementations for message passing systems which 
only support sending contiguous buffers. T2DFFT, however, tries to avoid the intermediate copy 
step by performing multiple packs per message. The result is that each message is passed to the 
socket layer as a series of fragments. 

5   Methodology 

Our approach is to directly measure the network traffic of each of the programs on a LAN of 
Ethernet [17] connected DEC Alpha [6] workstations. A machine running in promiscuous mode is 
used to record each packet. This data is then analyzed using a variety of simple, custom programs. 

5.1 Environment 

Nine DEC 3000/400 Alpha (21064 [5] at 133 MHz with 64 MB RAM) workstations [6] run- 
ning OSF/1 2.0 were used as our testbed. The built-in Ethernet [17] adaptors were married to a 
multi-segment bridged Ethernet LAN, so all machines shared a common collision domain and an 
aggregate 1.25 MB/s of bandwidth. Since these machines are office workstations and other ma- 
chines share the LAN, all measurements were performed in the early morning hours (4-5 am) to 
avoid other traffic, and were repeated several times. 

5.2 Compilation 

Each of the six Fx programs can be compiled for an arbitrary number of processors. Due to the 
stress these programs place on machines and networks, it was decided to compile them for four 
processors. The programs were compiled with version 2.2 of Fx compiler and version 3.3 of the 
DEC Fortran compiler. The basic level of optimization (-O) was used with the latter compiler. The 
object files were linked with version 3.3.3 of PVM and with version 2.2 of the Fx/PVM run-time 
system. 

5.3 Measurement 

To measure the network traffic, one of the workstations was configured with the DEC packet filter 
software, which allows priveledged users to use the network adaptor in promiscuous mode. The 
measurement workstation was not used to run any Fx program. Instead, it ran the TCPDUMP 
program included with OSF/1 and collected a trace of all the packets on the LAN generated by 
each test program. For the Fx programs, including AIRSHED, each outer loop as iterated 100 
times, except for SEQ, which was iterated five times. 



Each of our traces captured all the packets on the network, providing a time stamp, size, pro- 
tocol, source and destination for each packet. We considered the size of the packet to include the 
data portion, TCP or UDP header, IP header, and Ethernet header and trailer. Where sensible, we 
produced a trace for a single connection by extracting all packets sent from one host to another. 

6   Results 

In this section, we describe the traffic characteristics for each of the six Fx programs. 

6.1   Fx kernels 

For each of the kernels, we examined its aggregate traffic and the traffic of a representative con- 
nection, if there was one. We define a connection to be a kernel-specific simplex channel between 
a source machine in a destination machine. Thus for P = 4, each of the kernels exhibits 12 
connections. Notice that by considering a connection between machines as opposed to between 
machine-port pairs, we capture all kernel-specific traffic between a source and destination machine. 
This includes TCP traffic for message passing, UDP traffic between the PVM daemons, and TCP 
ACKs for the symmetric channel. The communication pattern of HIST and SEQ are not symmet- 
ric, so we only examine the aggregate traffic of these kernels. T2DFFT's pattern is symmetric 
about the partition, so we consider a connection from a machine in the sending half to a machine 
in the receiving half. The other kernels have symmetric communication patterns, so we choose the 
connection between an two arbitrary machines. 

The traffic of each of the kernels is characterized by its packet sizes, interarrival times for pack- 
ets, and bandwidth, both for the aggregate traffic and the traffic over the representative connection. 
We concentrate on characterizing the bandwidth, since this appears the most interesting. 

We note here that the graphs presented are not all to the same scale. The intention is to better 
highlight the features of each graph. However, this does make quick comparisons between graphs 
more difficult. 

Packet size statistics 

Figure 3 shows the minimum, maximum, average and standard deviation of packet sizes for each 
of the five applications. The first table covers all the connections while the second includes only 
packets in a single representative connection. Although we do not present histograms here, it is 
important to remark that for several of the kernels (2DFFT, HIST, SOR), the distribution of packet 
sizes is trimodal. This is because these programs send messages large messages which are split 
over several maximal size packets and a single smaller packet for the remainder. Further, because 
TCP is used for the data transfer, there are a significant number of ACK packets. One would expect 
T2DFFT to also send large messages and therefore exhibit a trimodal distribution of packet sizes. 
However, a different PVM mechanism is used to assemble messages in T2DFFT. As described 
in section 4, PVM internally stores messages as a fragment list and generates packets for each 
fragment separately. Because of the way messages are assembled in T2DFFT, many fragments 
result, explaining the variety of packet sizes. 



Program 
Packet Size (Bytes) 

Min Max Avg SD 
SOR 58 1518 473 568 
2DFFT 58 1518 969 678 
T2DFFT 58 1518 912 663 
SEQ 58 90 75 14 
HIST 58 1518 499 575 

Program 
Packet Size (Bytes) 

Min Max Avg SD 
SOR 58 1518 577 591 
2DFFT 58 1518 977 667 
T2DFFT 134 1518 1442 158 
SEQ - - - - 

HIST - - - - 

(aggregate) (connection) 

Figure 3: Packet size statistics for Fx kernels 

Program 
Interarrival Time (ms) 

Min Max Avg SD 
SOR 0.0 1728.7 82.1 234.9 
2DFFT 0.0 1395.8 1.3 10.8 
T2DFFT 0.0 1301.6 1.5 14.3 
SEQ 0.0 218.6 1.3 8.6 
HIST 0.0 449.9 16.5 45.5 

Program 
Interarrival Time (ms) 

Min Max Avg SD 
SOR 
2DFFT 
T2DFFT 
SEQ 
HIST 

0.0 
0.0 
0.0 

1797.0 
2732.6 
4216.7 

614.2 
15.1 
9.5 

590.8 
120.5 
127.3 

(aggregate) (connection) 

Figure 4: Packet interarrival time statistics for Fx kernels 

Interarrival time statistics 

Figure 4 shows the minimum, maximum, average, and standard deviation of the packet interarrival 
times for each of the five programs. The first table shows the statistics for all the connections, 
while the second concentrates on a single representative connection. Notice that ratio of maximum 
to average interarrival time for each program is quite high. This is due to the aggregate bursty 
nature of the traffic, as we discuss below. 

Bandwidth 

Figure 5 shows the aggregate and per-connection average bandwidth used over the lifetime of each 
of the five programs. It is somewhat counter-intuitive (and quite promising!) that even the most 
communication intensive Fx programs such as 2DFFT do not consume all the available bandwidth. 
However, recall that Fx programs synchronize via their global communication phases, so there are 
stretches of time where every processor is computing. Each of these periods is followed by an 
intense burst of traffic, as every processor tries to communicate. 

It is important to note that this synchronization is inherent in the Fx model and is not merely 
a result of serialization due to the Ethernet MAC protocol. In fact, in several new communica- 
tion strategies optimized for compiler-generated SPMD programs the global synchronization is 
enforced by a separate barrier synchronization before each communication phase [18, 20]. 

The effect of this inherent synchronization is made clear by examining figure 6, which plots 
the instantaneous bandwidth averaged over a 10 ms window for the each of the kernel. This was 
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Program KB/s 
SOR 5.6 
2DFFT 754.8 
T2DFFT 607.1 
SEQ 58.3 
HIST 29.6 

Program KB/s 
SOR 0.9 
2DFFT 63.2 
T2DFFT 148.6 
SEQ - 
fflST - 

(aggregate) (connection) 

Figure 5: Average bandwidth for Fx kernels 

computed using a sliding 10 ms averaging window which moves a single packet at a time. For the 
SOR, 2DFFT, and T2DFFT kernels, the aggregate bandwidth is plotted on the left and the band- 
width of the representative connection on the right. Since HIST and SEQ have no representative 
connection, only their aggregate bandwidths are plotted. In each case, we show a ten second span 
of time, enough to include several iterations of the kernel. The complete traces are between 50 and 
several hundred seconds long. 

The most remarkable attribute of each of the kernels is that the bandwidth demand is highly 
periodic. Consider the 2DFFT. Both plots show about five iterations of the kernel. Notice that 
there are substantial portions of time where virtually no bandwidth is used (all the processors are 
in a compute phase). The reason the third and fourth burst are short is because they are, in fact, a 
single communication phase where some processor descheduled the program. Because the all-to- 
all communication schedule is fixed and synchronous, the communication phase stalled until that 
processor was able to send again. 

Figure 7 shows the corresponding power spectra (periodograms) of the instantaneous average 
bandwidth. The power spectra show the frequency-domain behavior of the bandwidth, and are 
very useful for characterizing it, as we will explore in Section 7.2. It is important to note that the 
power spectra capture the periodicity of the bandwidth demands these applications place on the 
network. 

For these calculations, the entire trace of each kernel was used, not just the first 10 seconds 
displayed in figure 6. Because a power spectrum computation requires evenly spaced input data, 
the input bandwidth was a computed along static 10 ms intervals by including all packets that 
arrived during the interval. This is a close approximation to the sliding window bandwidth, and 
more feasible than correctly sampling the sliding window bandwidth data, which would require a 
curve fit over a massive amount of data. 

Not surprisingly, SEQ, in which processor 0 repeatedly broadcasts a single word, is extremely 
periodic, with the four Hz harmonic being the most important. HIST has a 5 Hz fundamental with 
linearly declining harmonics at 10, 15, etc. Hz. 

SOR and 2DFFT display opposite relationships between the connection and aggregate power 
spectra. For SOR, the connection power spectrum shows great periodicity, with a fundamental of 
about 5 Hz and interestingly modulated harmonics, but the aggregate power spectrum shows far 
less clear periodicity. For 2DFFT, the relationship is the reverse, although less strong, with a clear 
fundamental of 1/2 Hz and exponentially declining harmonics. There are two explanations for 

this. First, 2DFFT transfers more data per message than SOR (0( (f) ) versus O(N), N = 512, 
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Program 
Packet Size (Bytes) 

Min Max Avg SD 
AIRSHED 58 1518 899 693 

(aggregate) 

Program 
Packet Size (Bytes) 

Min Max Avg SD 
AIRSHED 58 1518 889 688 

(connection) 

Figure 8: Packet size statistics for AIRSHED 

P = 4), so has a better chance of being descheduled (as discussed above). Second, 2DFFT"s 
communication pattern more closely synchronizes all the processors than SOR's. Thus a single 
SOR connection has a better chance of being periodic because the sending processor is less likely 
to be descheduled. On the other hand, SOR's aggregate traffic will be less periodic because the 
processors are less tightly synchronized. Notice, however, that in both cases, the representative 
connection's power spectrum does show considerable periodicity. 

T2DFFT's power spectra have the least clear periodicity of all the Fx kernels. However, the 
aggregate spectrum seems slightly cleaner than the spectrum of the representative connection. The 
fact that neither spectrum is very clean is surprising given the synchronizing nature of this pattern, 
the balanced message sizes, and the communication schedule (shift) used for it. We believe the 
problem arises from PVM's handling of the message as a cluster of fragments. 

6.2   AIRSHED Simulation 

For AIRSHED, we examined both the aggregate traffic as well as the traffic of one connection. 
The format of the data we present mirrors that of the previous section. 

Packet size statistics 

Figure 8 shows the minimum, maximum, average, and standard deviation of packet sizes for the 
AIRSHED application (for all connections and for the representative connection). We observe that 
the packet size distribution for the single connection is very similar to the aggregate packet distri- 
bution, which supports the argument that the traffic from the single connection is representative of 
the aggregate traffic. 

Interarrival time statistics 

Figure 9 shows the minimum, maximum, average, and the standard deviation of packet interarrival 
times. Note that both the maximum and average interarrival times are of an order of magnitude 
greater than that of the kernel applications. As in the case of the kernel applications, the ratio of 
maximum to average interarrival time is quite high, which is characteristic of bursty traffic. 

Bandwidth 

The average aggregate and per-connection bandwidths for the AIRSHED application are 32.7 KB/s 
and 2.7 KB/s, respectively. Figure 10 shows the instantaneous bandwidth averaged over a 10 ms 
window (over a 500 sec interval, and a 60 sec interval). It is clear that the bandwidth demand is 
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Program 
Interarrival Time (ms) 

Min Max Avg SD 
AIRSHED 0.0 23448.6 26.8 513.3 

(aggregate) 

Program 
Interarrival Time (ms) 

Min Max Avg SD 
AIRSHED 0.0 37018.5 317.4 2353.6 

(connection) 

Figure 9: Packet interarrival time statistics for AIRSHED 
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Figure 10: Instantaneous bandwidth of AIRSHED (10ms averaging interval) 

highly periodic, and is periodic over three different time scales. The simulation is divided into a 
sequence of h simulation-hours (h = 100 in the simulation), each of which involves a sequence 
of k simulations steps {k = 5). Each simulation hour starts with a preprocessing stage, where the 
stiffness matrix is computed. Once the stiffness matrix is computed, the program moves on to the 
simulation stages. Such simulation is characterized by (1) a local horizontal transport computation 
phase, (2) a subsequent global all-to-all transpose traffic, (3) a local chemical/vertical transport 
computation phase, and finally (4) a global all-to-all transpose traffic in the reversed direction. 

A total of 100 bursty periods are observed, corresponding to the 100 simulation hours. The 
bandwidth utilization between each bursty period is very low because no communication is in- 
volved during the preprocessing stage at the beginning of each simulation hour. Each bursty period 
can be further divided into 5 pairs of peaks, with each pair of peaks corresponding to one simu- 
lation step. The time between each pair of peaks reflects the time spent in the chemical/vertical 
transport computation stage, whereas the time interval between adjacent pairs - which is slightly 
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Figure 11: Power spectrum of bandwidth of AIRSHED (10ms averaging interval) 

shorter - corresponds to the time spent in the horizontal transport computation. Such periodicity 
becomes very clear when we observe the power spectra for the AIRSHED simulation (figure 11). 
There are three peaks (plus their harmonics) in the power spectrum at approximately 0.015 Hz (66 
sec, corresponding to a simulation hour), 0.2 Hz (5 sec, corresponding to the length of the chem- 
ical/vertical transport phase), and 5 Hz (200 ms, corresponding to that of the horizontal transport 
phase), respectively. Section 7.2 discusses the use of power spectra for characterizing the network 
traffic of these programs. 
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7   Discussion 

The measurement and analysis of the Fx kernels and the AIRSHED program point to several 
important characteristics of the network traffic of Fx parallel programs. The most important of 
these is that their periodicity is well characterized by their power spectra, and can be emulated by 
simplifying the Fourier series implied by the spectra. Finally, we suggest a negotiation model for 
QoS which would allow both the network and the program to co-optimize for performance. 

7.1 Elementary characteristics 

Fx programs exhibit some global, collective communication patterns which may not necessarily 
be characterized by the behavior of single connection. For example, the SEQ (broadcast pattern) 
and HIST (tree pattern) kernels are not symmetric — in SEQ only the connection from processor 
0 to the every other processor (and the symmetric connections back to processor 0) see traffic. 
Further, characterizing the symmetric patterns such as neighbor, all-to-all, and partition by a single 
connection ignores the fact that these patterns are very different in the number of connections that 
are used. For example, each of the patterns may communicate the same size message along a 
connection, but while all-to-all sends such a message along all P(P — 1) connections, neighbor 
sends a message along only at most 2P connections. The partition pattern is in the middle at ^ 
connections for an equal partition into two halves. 

Another important characteristic of Fx programs is that their communication phases are syn- 
chronized, either explicitly or implicitly. This means that the traffic along the active connection is 
correlated and any traffic model must capture this. Further, the stronger the synchronization, the 
more likely it is that the connections are in phase. 

7.2 Characterizing periodicity 

As stated above, the synchronized communication phases of a Fx program imply that its connec- 
tions act in phase. Thus, the power spectra of Figures 7 and 11 fully characterize the bandwidth 
demands of the applications discussed in this paper. Furthermore, it should be realized that the 
power spectrum is the square of the Fourier transform of the time-domain instantaneous average 
bandwidth. Since this underlying signal is periodic, the transform is a Fourier series: 

oo 

X(u>)=   J2   2™k6(u-u0) (1) 
k=—co 

where the ak are the coefficients which can be read off of the power spectrum graphs. The time- 
domain instantaneous bandwidth can then be reconstructed as: 

oo 

x(t)=   Y.  a^k"0t (2) 
k=—oo 

While the summation may appear analytically daunting, note that x(t) can be approximated by 
choosing some number of the "spike" aks from the spectra (those with the greatest magnitude). As 
the number of spikes chosen increases, the approximation will converge to the actual signal. 
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7.3   QoS negotiation model 

Consider a simple parallel program where each processor generates periodic bursts along one of its 
connections (a shift pattern.) Unlike variable bit rate video source, where the periodicity is known, 
but the burst size is variable, the parallel program's burst size is usually known a priori (in the case 
of Fx, at compile-time), but the period between bursts depends on the number of processors and 
the bandwidth the network can provide to the application during the burst. Suppose the program 
performs W work during a compute phase, and each processor send a message of length N. If the 
network can allocate a burst bandwidth of B for each active connection without congestion, then 
the burst length is U = ^ and the burst interval is tu = y- + |f. Notice that the burst interval, 
which certainly plays into the decision of what B the network can commit to, is a function of B 
itself (as well as of the other commitments the network has made.) 

It must pointed out that the parallel program clearly wants to minimize £&; in order to minimize 
its total execution time. One way it can do this is to increase the number of processors P it runs 
on. However, there is a natural tension with the bandwidth B that the network can commit to, and, 
less obviously, the communication pattern determines how strong that tension is. Thus getting the 
best performance from a parallel program on a network is essentially an optimization problem, 
where the number of processors plays a role. We suggest that a SPMD parallel program should 
characterize its traffic with three parameters, [/(),&(), c], where c is the communication pattern, / is 
a function from the number of processors P to the local computation time tiocai on each processor, 
and b is a function from P to the burst size N, along each connection. In order to meet the 
"guarantee" of minimizing tbi, the network is allowed to return the number of processors P the 
program should run on. 

8    Conclusions and Future Work 

We measured the traffic characteristics of six parallel programs on an Ethernet. The conclusion to 
be drawn from the measurements is that the traffic of parallel programs is fundamentally different 
from the media traffic that is the current focus of QoS research. Unlike media traffic, there is 
no intrinsic periodicity due to a frame rate. Instead, the periodicity is determined by application 
parameters and the network itself. We suggested a traffic characterization and service negotiation 
model that allows the network to modulate application parameters in an effort to achieve the best 
performance possible given the current network state. This is clearly an important area for future 
research. 
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